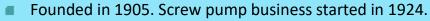


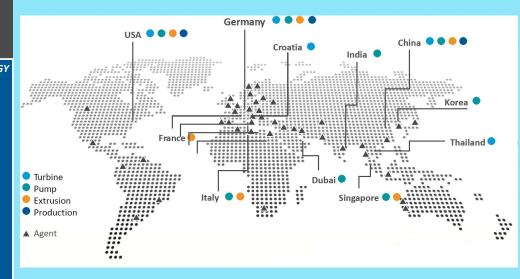
Providing The Appropriate Pump For Fluid and Multiphase Applications

Steven Ho | Jakarta | 17 June 2025



INTRODUCTION TO LEISTRITZ

Brief Introduction / History / Organization Structure



- Privately owned, independent company
- Certification in accordance with DIN EN ISO 9001:2008, DIN EN ISO 14001:2004,
 DIN EN ISO 50001:2011, BS OHSAS 18001:2007, GOSGOR TECHNAZOR, RS Supervisor, ABS, BV, GL, RINA und RMRS

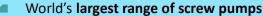
LEISTRITZ AG

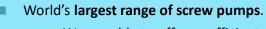
Shared Service Center: Finances, Human Resources, Strategic Procurement, Facility Management, Corporate communications, Trainee program

TURBINE TECHNOLOGY	PUMP TECHNOLOGY	EXTRUSION TECHNOLOGY	PRODUCTION TECHNOLOG		
Components for aircraft engines (e.g. blades, discs, BLISK)	Screw pumps and systems	Extruders and extrusion lines	Machine tools and tools		
Facilities:	Facilities:	Facilities:	Facilities:		
→ Nuernberg	→ Nuernberg	→ Nuernberg	→ Pleystein		
→ Remscheid	Subsidiaries:	Subsidiaries:	Subsidiaries:		
∠ Chonburi, Thailand	→ Milano, Italy	∠ Ceyzériat, France	∠ Allendale, NJ, USA		
→ Belisce, Croatia	→ Allendale, NJ, USA				
Subsidiaries	→ Taicang, China	→ Somerville, NJ, USA			
→ Allendale, NJ, USA	→ Singapore	→ Taicang, China			
	⊅ Dubai, UAE	→ Singapore			
	∠ Chennai, India				

PERTAMINA GAS

Introduction to Leistritz

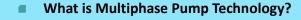

Advantages of LEISTRITZ Screw Pumps and what we stand for


- We are able to offer a sufficient solution for nearly every challenge in a safe, highly efficient and reliable way.
- Our pumps can handle a wide viscosity range (0,5 1 Mio. cSt), and we consider the risk of toxic, flammable or chemical aggressive medium. We are able to select between standard materials or high-alloy steels.
- Also **high pressure application** could be fulfilled.

One chosen screw pump can handle a variety of fluids with different viscosity or temperature ranges, which means a very high flexibility in process.

LEISTRITZ pumps creates low shear forces and turbulences in the fluid, which leads to a very gentle product delivery. This also means a low pulsation and quiet operation mode.

Series:	L2	L3	L4	L5	LPS		
Used for the transportation of:	light abrasive and corrosive, high or low viscous fluids with poor or good lubricity	non abrasive or light abrasive and corrosive, high or low viscous fluids with poor or good lubricity	abrasive/non abrasive, corrosive/non corrosive, lubricating/non lubricating, high or low viscous fluids	light abrasive and corrosive, high or low viscous fluids with poor or good lubricity	abrasive / non abrasive, corrosive / non <u>corosive</u> , <u>lutricating</u> , low or high viscous <u>singlephase</u> liquids or multiphase fluids with up to 100 % gas content (GVF)		
Capacity max.:	900 m³/h 3,960 GPM	700 m³/h 3,100 GPM	5,000 m³/h 22,000 GPM	1,700 m³/h 7,500 GPM	4,500 m³/h 19,800 GPM		
Differential pressure max.:	16 bar 232 psi	280 bar 4,060 psi	150 bar 2,175 psi	10 bar 145 psi	150 bar 2,175 <u>psi</u>		
Viscosity:	100,000 cst	15,000 cst	150,000 cst	100,000 cst	100,000 cst		
Pumping temperature max.:	280 °C 536 °F	280 °C 536 °C	350 °C 662 °F	280 °C 536 °F	350 °C 662 °F		



MULTIPHASE APPLICATIONS

Multiphase Technology & Advantages

- Management of liquid in <u>different phases (e.g. solid, liquid and gas)</u> through a pump system, with the ability to <u>transport the liquid</u> while providing <u>recovery</u> <u>for the gases</u>
- Handles untreated well flow within one machine
- Gas Volume Fractions (GVF) from 0 to 100% can be handled
- Reduce Greenhouse Gas Emissions into the atmosphere
- No additional seperators required
- No risk of plugging due to Paraffin / Wax with screw pump technology

Sustainable Advantages

- Prolong production of well with decreased back pressure
- Pressure boosting of the well flow to overcome flow line pressures slugs and wax in pipeline
- Sustain operation in old wells, increasing production otherwise, shut down/abandon
- Adaptable through time when well pressure drops with ability to handle slug flows
- Lesser power comsumption More economical
- Increase Recovery of Gases Flaring can be eliminated
- Dedicated Liquid Management System (LMS)

Running pump @ higher RPM

OIL PRODUCTION RATE

650

550

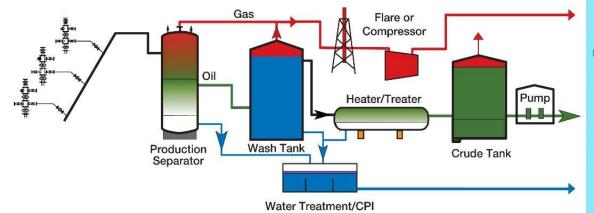
500 450

Q 400

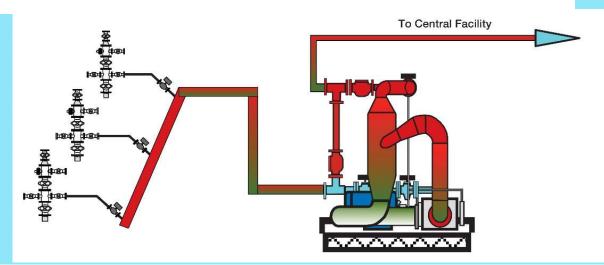
350

08/94 09/94 10/94 11/94 12/94 01/95 04/95 05/95 06/95 07/95 08/95 10/95 11/95

Pump operating @ 1600 RPM


Put well on multiphase pump

Multiphase Technology & Advantages


CONVENTIONAL PRODUCTION SYSTEMS

Sustainable advantages

- Reduce capital investment and power consumption vs conventional system
- Lowers overall maintenance costs, lesser equipment

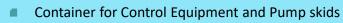
MULTIPHASE PRODUCTION SYSTEMS

Flaring is eliminated

- Less pollution to the environment
- Other uses for recovered gas e.g. power generation, heating, etc.

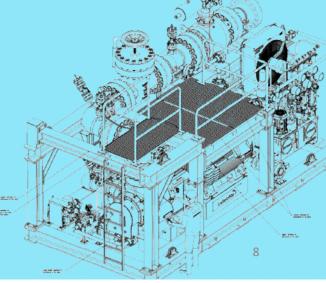
6/18/2025

7


Multiphase Pump Skids

Scope of supply

- Multiphase Pump
- Motor / Engine (Electric, Diesel or Gas)
- Baseplate / Coupling & Guard
- Lube & Seal Oil System
- Instrumentation, Junction boxes, etc.
- On-skid Tubing & Wiring


- Liquid Management System <u>dedicated system</u> for <u>every pump</u>, <u>ease of maintenance</u> and shutdown
- On-skid Piping with Filter, Shut-off valves, etc.
- Variable Speed Drive
- PLC incl. Touch Panel, MV Switchgear, UPS, Remote Control (SCADA Interface), etc.

MPP Technology Offshore Reference

PTTEP KIKEH DTU Project – Malaysia

■ Pumps: 2 x L4NG-220 ■ Power: 500kW

■ Capacity: up to 680m³/h ■ Speed: up to 3200 rpm

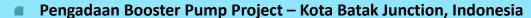
GVF: up to 65% Installed 2023

DP: up to 16 bar Commissioned 2024

PERTAGAS Project Reference 1

Pengadaan Booster Pump Project – Batang HO, Indonesia

Pumps: 4 x L4MG-240


■ Capacity: up to 200 m³/h

DP: up to 32 bar

Power: 400 kW

Speed: up to 1450 rpm

Installed and commissioned 2024

Pumps: 5 x L4MG-240

■ Capacity: up to 200 m³/h

DP: up to 19 bar

Power: 400 kW

Speed: up to 1450 rpm

Installed and commissioned 2024

10

PERTAGAS Project Reference 2

Feed Upgrading Booster System - Manggala, Indonesia

Pumps: 3 x L3MG-090

Capacity: up to 660 L/min

DP: up to 40 bar

Power: 110 kW

Speed: up to 1450 rpm

Target delivery in July 2025

■ Feed Upgrading Booster System – Kota Batak, Indonesia

Pumps: 4 x L3MG-100

Capacity: up to 1100 L/min

DP: up to 40 bar

Power: 132 kW

■ Speed: up to 1450 rpm

■ Target delivery in July 2025

Oil and Gas – Upstream

Other References

Fuel Oil transfer pump L4MG-220 1,530 m³/h @ 12 bar

Pipeline pump L4MG-410 3,948 m³/h @ 20 bar

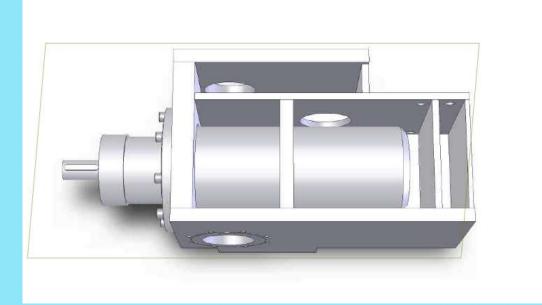
Crude oil booster pump L3HG-xxx 50 m³/h @ 103 bar

Multiphase Pump L4MG-200 388 m³/h @24 bar

Multiphase Pump L4MG-200 517 m³/h @17.5 bar

RE-ENGINEERED PUMPS

14


Re-Engineered Pumps

What is Re-Engineered Pumps?

- Newly built customized pumps designed according to the operational duties of existing installation (independent of screw pump vendor)
- A customized casing is used closely fit into the envelope of the existing installation

6/18/2025

Easy and fast exchange without the need of piping modifications!

Re-Engineered Pumps

PERTAMINA GAS

References

End User: Murphy Oil Existing Pump: IMO C324-375 New Pump: L3MC-125

Existing Pump: IMO 8L-400 New Pump: L3HC-100

End User: ConocoPhillips Existing Pump: Gearex E-3 New Pump: L3MC-125

Objective: Sharing practical insights in project management & technical execution

Project & Product Management Method

PIPELINE AND ENERGY SUMMIT

Initiation

- Stakeholder Analysis
- Pertagas
- Pegasol
- Elnusa • LS & JC
- WEG
- MKAPR
- Project Schedule • ERP - iDhempiere
- Internal JOB Portal • Engineering & QC Document Portal

Integration

Management

Project Management

Information system

- Manpower portal -
- Microsoft 365

Scope Management

- Engineering Documents
- Product
- FAT & IFAT
- Installation & Commissioning
- Warranty

Communication Management

- Communication System
- Communication Channel
- Communication Tools

Project Management

Resource

System

Management

• Project Team

Facility equipment

Engineering Facility

Product Production

Inspection & Testing

Manpower resources

Project Management

Schedule Management

- Main schedule
- Procurement schedule
- Internal Job Schedule
- Monitoring & Control system

Risk Management

- system
- Scope
- Schedule
- Cost

Quality

- QC System

Product Product Testing Procedure Management Testing Facility

Product Design

- Design Tools
- Modeling
- Mechanical Electrical & Control
- Design Management system & ERP

- Risk Management

- Quality

Management

- •ITP

Manufacturing System

Application

Engineering Pump & Package

Pump

Mover

Skid

Seal

• Seal Plan

Transmission

Sealing System

Electrical & Control

Starting Panel

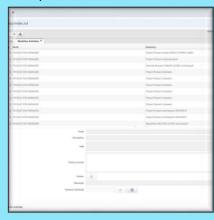
Control system

• Cabling & Acc

• ERP (Material, services,

- finance)
- Tools & Equipment system
- Manufacturing Flow Process system
- QC System
- Man Power system

PPIC system



Schedule Management

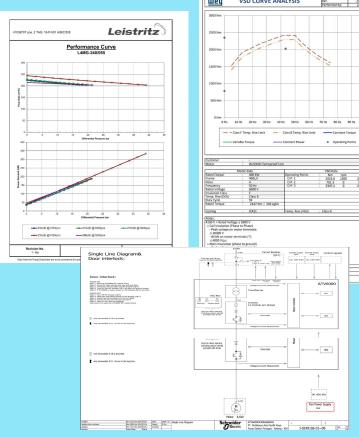
ERP System

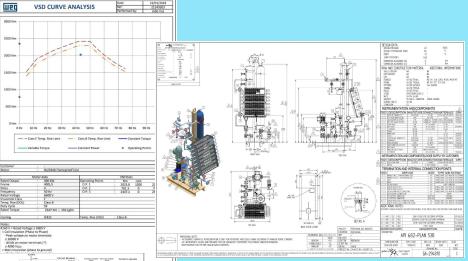
Internal Job System

Engineering & QC Document system

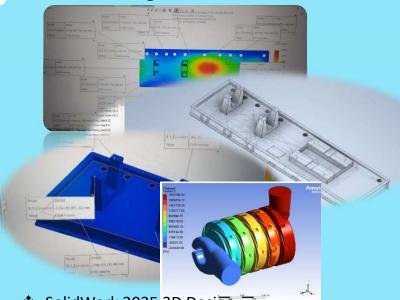
Man Power system

Communication – Office 365

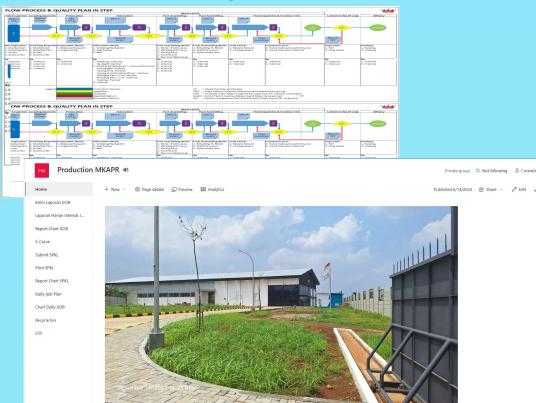




Product Application


- Leistritz Application tools
- WEG Application tools
- Schneider Application tools
- Jhon Crane Application tools

Product Management System



Product Design

- ❖ SolidWork 2025 3D Design
- SolidWork 2025 static structure analysis
- SolidWork 2025 dynamic simulation for structure vibration analysis
- ZW CAD Manufacture 2025
- Pipe Flow Expert
- ANSYS hydraulic pump design

Product Manufacturing

- Manufacturing Flow Process system
- Production Management tools portal

Project Details

Project Name: Project Pengadaan Booster Pump Package Batang HO & KBJ

Junction SLC (2024 – 2025)

EPCI : Consortium PT Elnusa Tbk – PT Pgas Solution

Bowheer : PT Pertamina Gas

Quantity: 9 Units (5 Units KBJ SLC & 4 Units Batang HO)

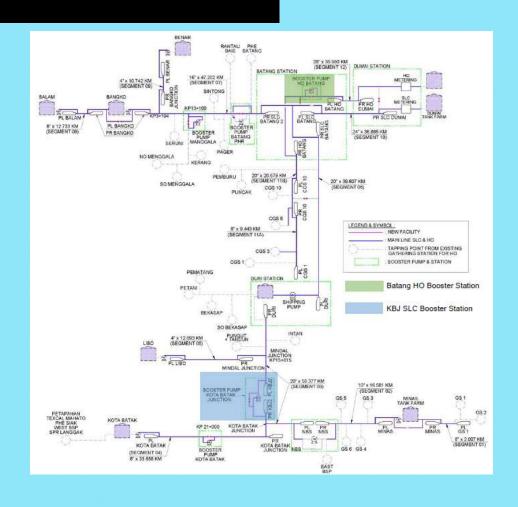
Scope : Engineering, Procurement of Main Unit (Pump Package),

Supervision, Installation & Commissioning, Mechanical &

Performance Guarantee

Challenges : Short Delivery Time (10 Months on Site), Solid Particles (Up to

3mm), High Viscosity, and National Strategic Project


Project Application

Batang HO Area

PT Pertamina Gas plans to send the Heavy Oil (HO) crude from several Central Gathering Stations (CGS) belonging to Pertamina Hulu Rokan (PHR), up to a flowrate of 89,000 BOPD to be transferred to Dumai Tank

Kota Batak Junction Area

PT Pertamina Gas plans to optimize transmission Sumatran Light Crude (SLC) from several Gathering Stations (GS) belonging to Pertamina Hulu Rokan (PHR), up to a flowrate ±108,325 of BOPD to be transferred to Duri Tank

Technical Data

OPERATING	Ι	O PUMPED FLUID							
	MIN NORMAL	RATED	MAX (1)	•	TYPE OR NAME OF	PUMPED	FLUID	CRUDE HEAV	YOIL
CAPACITY: (usgpm)	440 876	876	876				MIN	NORMAL	RATED
OTHER OPER CONDITIONS: (usgpm)		a.	.50	•	TEMPERATURE:	(°F)	-	a	100.4
DISCHARGE PRESSURE: (psig)	568.51 534.07	534.07	599.95	•	VAPOR PRESS:	(psia)	14.7		14.7
SUCTION PRESSURE: (psig)	28.18 252.68	32.68	2.68	•	RELATIVE DENSITY	(SG):	0.918	2	0.918
DIFFERENTIAL PRESSURE: (psi)	540.33 281.39	501.39	597.27	•	VISCOSITY:	(cP)	559	8	2300 (note 15)
NPSH AVAILABLE 25.21	(ft)			0	SPECIFIC HEAT			Cp (BTU/lb°	F)
O NPIP AVAILABLE	(psia)			•	CORROSIVE/EROS	IVE AGENTS	DESCRIPTION		
NPSHaA / NPIP DATUM:		● EROSIVE Sand ○ CORROSIVE			VE				
0	0	CHLORIDE CONCE	NTRATION	(ppm)	N/A				
O DUTY CYCLE CONTINUOUS	O H2S CONCENTRATION (ppm)								
(1) Maximum - mechanical design	FLUID O HAZARDOUS O FLAMMABLE O OTHER								
				0	GAS O EN	TRAINED	O SLUG FLOW	% BY VOLUME or G	VF
				•	SOLIDS PA	RTICLE SIZE	DISTRIBUTION & N	MIN/MAX	(note 13) (μ)
				0	SHAPE	O CON	ICENTRATION	O HARDNES	SS

Batang HO Area

Kota Batak Junction Area

	OPERATIN	IG CONDIT	rion						C	PUMPED FLUI	D	
Г		MIN	NORMAL	RATED	MAX (1)	•	TYPE OR NA	ME OF	F PUMPED	FLUID	SUMATRA LIGH	T CRUDE
•	CAPACITY: (usgpm)	876	876	876	876					MIN	NORMAL	RATED
0	OTHER OPER CONDITIONS: (usgpm)	1.77	-	1.5	8 ≘ 7	•	TEMPERATU	JRE:	(°F)			94,82
•	DISCHARGE PRESSURE: (psig)	319	319	319	607,6	•	VAPOR PRE	SS:	(psia)	14,7	(5)	14,7
•	SUCTION PRESSURE: (psig)	8,59	68,59	38,59	38,59	•	RELATIVE D	ENSITY	(SG):	0,85		0,85
•	DIFFERENTIAL PRESSURE: (psi)	280,41	250,41	280,41	599,01	•	VISCOSITY:		(cP)	179	-	483 (Rem. 15)
•	NPSH AVAILABLE 27,14		(ft)			0	SPECIFIC HE	AT			Cp (BTU/lb	°F)
0	NPIP AVAILABLE		(psia)			•	CORROSIVE	/EROS	IVE AGENT	TS DESCRIPTION		
•	NPSHa / NPIP DATUM:	C.L. SUC	TION NOZ	ZLE			● ER	OSIVE		Sand	O CORROS	IVE
O TOP PF FOUNDATION						0	CHLORIDE C	ONCE	NTRATION	l (ppm)	N/A	
0	DUTY CYCLE CONTINUOU	S	O INTE	RMITTEN	T	0	H2S CONCE	NTRAT	TION	(ppm)		
	(1) Maximum - mechanical design					FLU	ID O HA	ZARD	ous O	FLAMMABLE	O OTHER	
							GAS C	EN'	TRAINED	O SLUG FLOW	% BY VOLUME or	GVF
						•	SOLIDS	PAI	RTICLE SIZ	E DISTRIBUTION &	MIN/MAX	000 (Rem. 13)
							SHAPE		O cor	NCENTRATION	O HARDNE	ESS

Selected Pump Type : Screw Pump API 676

Model : Twin Screw Pump with Timing Gears

(L4)

Key Reasons :

1. Standardized design, allowing direct interchange between sites

2. Suited for fluctuating suction & discharge conditions

3. Non-pulsating (designed for parallel operation with multiple pumps)

Mech Seal : Double Acting Mech Seal With Plan 53B

Key Reason : 1. Prevent leakage from process liquid

2. API 682 compliant

Supporting Equipment: MV Motor 400 kW & MV VSD 500kW

Project Management – Best Practices

Scope & Planning

Procurement

Scheduling

Risk Management

Execution

Integration FAT

Commissioning

: Doing Routine Consignment meeting with Pertagas & EPCI

: Execute purchase of the Long Lead Item & Enhance Local Material (Skid) for TKDN

: Master Schedule & Buffer

: 1. Learning from past project references in similar applications

2. Raise awareness to all parties to prevent similar mistakes from happening

: 1. Weekly update meeting with all parties and key suppliers

2. On-time submission of key documents

: Supervision by key suppliers (e.g. Leistritz, John Crane, WEG)

: 1. Prepare checklist and all necessary documents & tools in advance.

2. Supervision by key suppliers (e.g. Leistritz, John Crane, WEG)

Key Challenges & Mitigation Strategies

Key Challenge	Mitigation Strategy				
Short delivery time	Execute Long Lead Item, Air Freight, and Locally source				
Wide range of suction pressure	Pump & seal selection becomes critical where Leistritz has extensive experience in similar applications				
Solid particle & abrasive fluid	Select suitable pump material (Stellite coated) & mech seal material (hard face), seal system settings				
Requirement for API 682 Cat 3 compliance & limited available selection from the seal vendors	Work closely with reputable seal vendors and always seek approval from client / end user with regards to mech seal selection and seal plan design				
Scope changes during execution phase	Applied structured change management with formal documentation and approvals				
Expedited material delivery on site (Requested from end user)	Close follow up with sub-vendors, partial delivery of items to MKAPR workshop for assembly				

Lessons Learnt

1. Unfamiliar Commissioning Procedure - Seal Plan 53B Venting

- Issue: During commissioning, operators were unfamiliar with the proper venting procedure of the Seal Plan 53B circuit
- Impact: Trapped air in the seal system \rightarrow Seal face overheating, poor barrier fluid circulation.
- Lesson:
 - Incorporate step-by-step venting procedure in commissioning checklist.
 - · Pre-commissioning briefing & training for site operators/technicians by seal vendor

2. Premature Seal Leakages due to Seal Face Overheating

- Issue: Mechanical seals experienced premature leakage from overheating of seal faces.
- Root Cause: Insufficient barrier fluid circulation or trapped air.
- Lesson:
 - Monitor temperature differential across the seal pot during startup.
 - Ensure correct pre-fill and pressurization & venting procedure (prevent trapped air) before pump startup.
 - Change of circulating pump speed to slower → Minimize turbulence at the gland area and enhance heat absorption by the barrier fluid to reduce heat buildup at the seal faces

3. Frequent Bearing Oil Refilling & Pressure Buildup

- Issue: Overly frequent refilling of bearing oil → Overpressure in bearing housing → Oil sipping through seal drain pot
- Lesson:
 - · Implement scheduled oil level inspections post pump shutdown (settle down) rather than reactive refilling.
 - Check breather/vent on bearing housing to prevent pressure buildup.

Conclusions

- Combine Project Management & Product Management
- We are committed to close collaboration with our customers from project initiation to completion.
- Our focus is on long-term reliability, safety, and ease of maintenance.
- We provide continuous support during commissioning and beyond to ensure sustained operational success.
- Best practice = solid planning + right equipment + proactive communication
- We are always ready for future collaboration in similar projects

